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_ Background

Popular names in
African American Community

Profession Classification
Training Dataset

Popular names in
Non-Hispanic White Community

| am a Software Engineer. My name is Adam. Have | am a surgeon. My name is Beyonce. Enjoy yall
a nice day. day!!

Profession Label = Tech

Profession Label = Health

Test Example

| am a Network Engineer. My name is Carter. |-~ Profession  }.._.. > Health
T Classifier

Popular name in
African American Community

e ML models tend to rely of spurious signal for prediction

e Eg. Race specific names correlated to Profession feature.

e At test time if correlation breaks — wrong prediction.

Input Space Based
Removal Methods

Invariance Test in Checklist (Ribeiro et. al. 2020)

[ | am a Network Engineer. My name is Carter. . _ Health
rofession
Classifier

[ | am a Network Engineer. My name is John. Tech

Expectation: On changing “race”-specific
feature the prediction should not change

Difference prediction
implies the classifier is
using “race” specific
feature for it’s prediction

Counterfactual Data-Augmentation (Kaushik et. al 2020)

[ | am a Network Engineer. My name is Carter. ] True label = Tech  -.

Make perturbation .r,uch that true label
could be estimated/inferred
A 4

[ | am a Network Engineer. My name is John. ]

. Augment this learn
*  arobust classifier

Estimated True
label = Tech

Assumption : We could change the sensitive-concept in input space

Latent Space Based
Removal Methods

e Making perturbation in input is not always possible.
e Make perturbation or changes in latent space.

e Null Space Removal (INLP): Removes spurious
features by projecting latent space to null-space of
spurious feature classifier.

e Adversarial Removal (ADV): Jointly trains
main-task and spurious feature classifier adversarially.

Post Hoc Removal Method :
Iterative Null-Space Removal (INLP)

Frozen Main Classifier
Profession Prediction

Frozen Main Classifier
Profession Prediction
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Adversarial Removal Method

z Main-Classifier
c @ Profession Prediction Goal: Find the shared representation Z, such that:
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Equilibrium State: Encoder produces Z which only contain

GR Layer: Reverses the Profession.

gradient during backward
pass
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Race Prediction

Our Contribution

@ Any method using Probing classifier will fail.

@ Theoretical and Empirical Results showing failure of
INLP and Adversarial Removal.

Dataset Description

Dataset
Multi-NLI
Twitter AAE
Synthetic-Text

Main Task
Contradiction Prediction

Sentiment Prediction
Presence of Numbered Word

Spurious Feature
Negation Words
Race
Length of Text

Future Direction

@ Extending input space based removal method like
Counterfactual augmentation and Checklist to
non-trivial concepts.

@ Focus on debiasing classifier’s prediction than
representation e.g. in algorithmic fairness literature.

_ Example: Probing Failure

Goal: Learn a clean probing (Race) classifier which just
uses probing (Race) feature (green dashed line).
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Observation: Slanted unclean classifier (red) is better
than clean probing classifier (green) when trained with max-
margin objective.

Example: INLP Probing Classifier
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e From Lemma 2.1 — Probing Classifier is slanted

— o Null-Space of Probing Classifier is also slanted (wrong).

INLP Empirical Result

Expectation: Clean Main-Task classifier is given as input
to INLP, so it should have no effect on main-task classifier.

Dataset: MultiNLI
0.9 . 0.80

Dataset: Twitter-AAE
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Figure 1: Variation of Main Task accuracy with INLP
steps. Main-Task Accuracy goes to random guess as INLP
proceeds.

Dataset: Synthetic-NLP Dataset: Synthetic-NLP
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Figure 2: Measuring AProb i.e Change in prediction
probability of classifier by changing the spurious feature

Early Stopping Doesn’t Help: AProb increases in the
initial phase of INLP. Stopping early could lead to relatively
more unclean classifier.

ADYV Empirical Result

Metric: Post Adversarial Training accuracy on subset of

data where spurious correlation breaks (minority group).

Dataset: MultiNLI Dataset: Twitter-AAE
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Figure 3: Variation of Main-Task classifier’s accuracy on
minority group as we vary the degree ot correlation
between main and spurious feature. Little to no
improvement in minority group accuracy across dataset

_and degree of correlation.

e Continued removal leads to complete destruction of Z.
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Example: ADV Removal Failure

Goal: Learn shared 1D latent representation s.t.
main-task feature (Profession) is present.

only
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(Main-Task Feature)
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\ ADV Projection Direction
Race Accuracy = 50% (same as optimal)
Profession Accuracy = 100% (optimal)
Margin for Profession classifier = V1 > m

(from ADV training)

Observation: Slanted Projection Direction (red) better in
Main-task objective and equivalent in Adversarial Objective
than desired direction (green).

Example: INLP Feature Corruption
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(Main-Task Feature)
1 Original Profession feature (equal for both people)

1
2. Projection to Null-Space
4 3. Projected Profession feature (not equal)
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e Two individual with same profession but different race.

® Projecting to wrong Null Space — inverts Profession.

Assumptions

@ Latent Space is disentangled and frozen.
@ Probing feature is fully (100%) predictive.

€ Main-Task feature is linearly separable w.r.t. probing
label for the margin point of clean probing classifier.

Theory: Probing Failure

Lemma 2.1 (Informal) Given Assm 1,2.3 is satisfied:

® Cprob(2)

e Generalized version for any classifier in paper.

Theory: ADV Failure

Theorem 2.3 (Informal) Given adversarial removal
methods is just training the last layer. Then there exist
an unclean shared latent representation (Z) s.t.:

e Margin — Margin”*"(clean Z).

o Acc(unclean Z) = Acc®®(clean Z).

o L% (unclean Z) > L%(clean Z), when main-task and
probing labels are correlated and probing feature is

more useful for main-task than probing task for the
margin point of clean main-task classifier.

Theory: INLP Failure

Theorem 2.2 (Informal) Given the probing classifier used

by INLP is trained using max-margin objective (Lemma
1), following happens:

Mixing or Damage: After first step of INLP we have:

= Wyprob * “prob + Wain * Zmain where Wmain 7é 0.

main (ynclean Z )

: . after before after _ _before.
o if Wprobh = 07 2 main 7é Zmain and z prob zprob y else,
after before _before
Zmain 77D(Zma’m 7meb ) and
after before _before
Zprob T gb(zmain » “prob )

e Mixing is non-invertible in subsequent step of INLP.
Destruction: In long term:

o HZ H decreases after every step.




